login
A355959
Primes p such that (p+2)^(p-1) == 1 (mod p^2).
7
OFFSET
1,1
COMMENTS
a(3) > 107659373057 if it exists.
Primes p such that the Fermat quotient of p base 2 (A007663) is congruent to 1/2 modulo p. - Max Alekseyev, Aug 27 2023
PROG
(PARI) forprime(p=1, , if(Mod(p+2, p^2)^(p-1)==1, print1(p, ", ")))
CROSSREFS
(p+k)^(p-1) == 1 (mod p^2): A355960 (k=5), A355961 (k=6), A355962 (k=7), A355963 (k=8), A355964 (k=9), A355965 (k=10).
Cf. A007663.
Sequence in context: A228547 A193148 A307492 * A165711 A167369 A259161
KEYWORD
nonn,hard,more,bref
AUTHOR
Felix Fröhlich, Jul 21 2022
STATUS
approved