%I #20 Jul 30 2022 12:36:49
%S 1,1,2,1,2,2,2,1,3,2,1,2,2,2,4,1,2,3,2,2,3,2,1,2,2,2,3,2,1,4,2,1,2,2,
%T 4,3,2,2,4,2,1,3,1,3,5,1,1,2,2,2,4,2,2,3,2,2,4,1,2,4,1,2,4,1,3,4,1,2,
%U 2,4,2,3,2,2,5,2,2,4,2,2,3,1,1,3,3,1,2
%N a(n) is the number of terms of A333369 that divide n.
%t q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* _Amiram Eldar_, Jul 16 2022 *)
%o (Python)
%o from sympy import divisors
%o def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
%o def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
%o print([a(n) for n in range(1, 88)]) # _Michael S. Branicky_, Jul 16 2022
%o (PARI) issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
%o a(n) = sumdiv(n, d, issimber(d)); \\ _Michel Marcus_, Jul 18 2022
%Y Cf. A333369, A353735, A355771, A355772, A355773.
%Y Similar sequences: A083230, A087990, A087991, A332268, A355302.
%K nonn,base
%O 1,3
%A _Bernard Schott_, Jul 16 2022
%E More terms from _Michael S. Branicky_, Jul 16 2022