login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355770
a(n) is the number of terms of A333369 that divide n.
4
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 4, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 2, 1, 2, 2, 4, 3, 2, 2, 4, 2, 1, 3, 1, 3, 5, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 1, 2, 4, 1, 2, 4, 1, 3, 4, 1, 2, 2, 4, 2, 3, 2, 2, 5, 2, 2, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2
OFFSET
1,3
MATHEMATICA
q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
PROG
(Python)
from sympy import divisors
def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jul 16 2022
(PARI) issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
a(n) = sumdiv(n, d, issimber(d)); \\ Michel Marcus, Jul 18 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 16 2022
EXTENSIONS
More terms from Michael S. Branicky, Jul 16 2022
STATUS
approved