login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355618
a(n) is the least prime that is the sum of a list of numbers > 1 whose product is n, or -1 if there is no such prime.
1
2, 3, -1, 5, 5, 7, -1, -1, 7, 11, 7, 13, -1, -1, -1, 17, 11, 19, -1, -1, 13, 23, 11, -1, -1, -1, 11, 29, 11, 31, -1, -1, 19, -1, 11, 37, -1, -1, 11, 41, 13, 43, -1, 11, -1, 47, 11, -1, -1, -1, 17, 53, 11, -1, 13, -1, 31, 59, 13, 61, -1, 13, -1, -1, 17, 67, -1, -1, 17, 71, 13, 73, -1, 13, 23, -1
OFFSET
2,1
COMMENTS
a(n) = n if and only if n is prime.
If n is in A046315, a(n) = -1.
LINKS
EXAMPLE
a(12) = 7 because 7 = 3+4 is prime where 12 = 3*4, and no smaller prime works. This could also be done as 7 = 2+2+3 where 12 = 2*2*3.
MAPLE
G:= proc(S, n) option remember; local s, Sp;
if n = 1 then return {[]} fi;
Sp:= select(t -> n mod t = 0, S);
if Sp = {} then return {} fi;
s:= Sp[1];
map(t -> [s, op(t)], procname(S, n/s)) union procname(S[2..-1], n)
end proc:
f:= proc(n) local S;
S:= map(t -> convert(t, `+`), G(numtheory:-divisors(n) minus {1}, n));
subs(infinity=-1, min(select(isprime, S)))
end proc:
map(f, [$2..100]);
PROG
(PARI) mpartitions(k) = my(v, u); v=[[k]]; fordiv(k, d, if(d>1 && d<=sqrt(k), if(isprime(k/d), v=concat(v, [[d, k/d]]), u=mpartitions(k/d)); for(j=1, #u, if(vecprod(concat(d, u[j])) == k, v = concat(v, [vecsort(concat(d, u[j]))]))))); vecsort(Set(v))
a(n) = n=vecmin(apply(p->if(isprime(p=vecsum(p)), p, oo), mpartitions(n))); if(n<oo, n, -1) \\ Iain Fox, Jul 10 2022
CROSSREFS
Cf. A046315.
Sequence in context: A114690 A336364 A294223 * A376414 A378525 A238122
KEYWORD
sign,look
AUTHOR
J. M. Bergot and Robert Israel, Jul 10 2022
STATUS
approved