login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114690 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n and having k weak ascents (1 <= k <= ceiling(n/2)). 2
1, 2, 3, 1, 5, 4, 8, 12, 1, 13, 31, 7, 21, 73, 32, 1, 34, 162, 116, 11, 55, 344, 365, 70, 1, 89, 707, 1041, 335, 16, 144, 1416, 2762, 1340, 135, 1, 233, 2778, 6932, 4726, 820, 22, 377, 5358, 16646, 15176, 4039, 238, 1, 610, 10188, 38560, 45305, 17157, 1785, 29, 987 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps.

Row n has ceiling(n/2) terms.

Row sums are the Motzkin numbers (A001006).

Column 1 yields the Fibonacci numbers (A000045).

Sum_{k=1..ceiling(n/2)} k*T(n,k) = A005773(n).

LINKS

Alois P. Heinz, Rows n = 1..200, flattened

Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, Matteo Silimbani, Consecutive patterns in restricted permutations and involutions, arXiv:1902.02213 [math.CO], 2019.

FORMULA

G.f. G = G(t, z) satisfies G = z*(t+G)*(1+z+z*G).

EXAMPLE

T(4,2)=4 because we have (HU)D(H),(U)D(HH),(U)D(U)D and (UH)D(H) (the weak ascents are shown between parentheses).

Triangle starts:

   1;

   2;

   3,  1;

   5,  4;

   8, 12,  1;

  13, 31,  7;

  ...

MAPLE

G:=(1-t*z^2-z-z^2-sqrt(1-2*t*z^2-2*z-z^2+t^2*z^4-2*t*z^3-2*z^4*t+2*z^3+z^4))/2/z^2: Gser:=simplify(series(G, z=0, 18)): for n from 1 to 15 do P[n]:=coeff(Gser, z^n) od: for n from 1 to 15 do seq(coeff(P[n], t^j), j=1..ceil(n/2)) od; # yields sequence in triangular form

# second Maple program:

b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, t,

      b(x-1, y+1, z)+expand(b(x-1, y-1, 1)*t)+b(x-1, y, z)))

    end:

T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0, 1)):

seq(T(n), n=1..14);  # Alois P. Heinz, Nov 16 2019

CROSSREFS

Cf. A001006, A005773, A000045, A114655.

Sequence in context: A060116 A319068 A335423 * A336364 A294223 A238122

Adjacent sequences:  A114687 A114688 A114689 * A114691 A114692 A114693

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Dec 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 19:59 EDT 2020. Contains 337321 sequences. (Running on oeis4.)