Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 06 2022 22:19:06
%S 0,1,2,3,1,0,3,2,2,3,0,1,3,2,1,0,1,0,3,2,0,1,2,3,3,2,1,0,2,3,0,1,2,3,
%T 0,1,3,2,1,0,0,1,2,3,1,0,3,2,3,2,1,0,2,3,0,1,1,0,3,2,0,1,2,3,1,0,3,2,
%U 0,1,2,3,3,2,1,0,2,3,0,1,0,1,2,3,1,0,3
%N Bitwise XOR of the base-4 digits of n.
%C Equivalently, the parity of the odd position 1-bits of n and the parity of the even position 1-bits of n, combined as a(n) = 2*A269723(n) + A341389(n).
%C In GF(2)[x] polynomials encoded as bits of an integer (least significant bit for the constant term), a(n) is remainder n mod x^2 + 1.
%H Kevin Ryde, <a href="/A355487/b355487.txt">Table of n, a(n) for n = 0..8192</a>
%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>
%F Fixed point of the morphism 0 -> 0,1; 1 -> 2,3; 2 -> 1,0; 3 -> 3,2 starting from 0.
%e n=35 has base-4 digits 203 so a(35) = 2 XOR 0 XOR 3 = 1.
%t a[n_] := BitXor @@ IntegerDigits[n, 4]; Array[a, 100, 0] (* _Amiram Eldar_, Jul 05 2022 *)
%o (PARI) a(n) = if(n==0,0, fold(bitxor,digits(n,4)));
%o (Python)
%o from operator import xor
%o from functools import reduce
%o from sympy.ntheory import digits
%o def a(n): return reduce(xor, digits(n, 4)[1:])
%o print([a(n) for n in range(87)]) # _Michael S. Branicky_, Jul 05 2022
%Y Cf. A030373 (base 4 digits), A003987 (XOR).
%Y Cf. A341389, A269723, A010060.
%Y Cf. A353167 (indices of 0's).
%Y Other digit operations: A053737 (sum), A309954 (product).
%K nonn,base,easy
%O 0,3
%A _Kevin Ryde_, Jul 04 2022