login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355444
a(n) = 1 if n is of the form p^2 * q where p and q are primes with p < q < p^2, otherwise 0.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = A353472(n) * A355454(n).
a(n) = A353474(n) - A355443(n).
MATHEMATICA
a[n_] := If[(f = FactorInteger[n])[[;; , 2]] == {2, 1} && f[[1, 1]]^2 > f[[2, 1]], 1, 0]; Array[a, 100] (* Amiram Eldar, Jul 07 2022 *)
PROG
(PARI) A355444(n) = ((numdiv(n) == (3+bigomega(n))) && issquare(divisors(n)[4]));
CROSSREFS
Characteristic function of A355446.
Sequence in context: A277163 A011726 A297041 * A070109 A355454 A107846
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 02 2022
STATUS
approved