The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355375 a(n) = Sum_{k=0..n} (-k)^(n-k) * Stirling2(n,k). 1
 1, 1, 0, -4, 10, 67, -969, 3341, 86976, -1988704, 14144108, 405611857, -17544321563, 287677263837, 3595470378748, -421298868094940, 14476946230894114, -112253861285434961, -18711849695261432065, 1354595712379990848137, -44436925726445545236496 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Table of n, a(n) for n=0..20. FORMULA E.g.f.: Sum_{k>=0} (1 - exp(-k * x))^k / (k^k * k!). MATHEMATICA a[n_] := Sum[(-k)^(n - k) * StirlingS2[n, k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Jun 30 2022 *) PROG (PARI) a(n) = sum(k=0, n, (-k)^(n-k)*stirling(n, k, 2)); (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (1-exp(-k*x))^k/(k^k*k!)))) CROSSREFS Cf. A229233, A232549, A318183, A355376. Sequence in context: A300642 A146304 A189893 * A197939 A207160 A244297 Adjacent sequences: A355372 A355373 A355374 * A355376 A355377 A355378 KEYWORD sign AUTHOR Seiichi Manyama, Jun 30 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 3 22:46 EDT 2023. Contains 363116 sequences. (Running on oeis4.)