login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355373
a(n) = Sum_{k=0..n} k! * (-1)^k * n^(n-k) * Stirling2(n,k).
1
1, -1, 0, 3, 40, 455, 2016, -177373, -11564160, -497664081, -12796467200, 536297904659, 132025634657280, 14907422733429239, 1181852660381503488, 34684559693802943875, -11771644802057621110784, -3553614228958108389522721, -656899368126170250221715456
OFFSET
0,4
FORMULA
a(n) = n! * [x^n] n/(n - 1 + exp(n*x)) for n > 0.
MATHEMATICA
a[n_] := Sum[k! * (-1)^k * n^(n - k) * StirlingS2[n, k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Jun 30 2022 *)
PROG
(PARI) a(n) = sum(k=0, n, k!*(-1)^k*n^(n-k)*stirling(n, k, 2));
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 30 2022
STATUS
approved