login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355329
Least increasing sequence of primes such that a(n) - 1 is a multiple of 6*n.
1
7, 13, 19, 73, 151, 181, 211, 241, 271, 421, 463, 577, 859, 1009, 1171, 1249, 1327, 1621, 2053, 2161, 2269, 2377, 3037, 3169, 3301, 3433, 3727, 4201, 5569, 5581, 5953, 6337, 6733, 7549, 7561, 7993, 9103, 9349, 9829, 10321, 10333, 10837, 11353, 11617, 12421, 12697, 12973, 13249, 14407, 15601
OFFSET
1,1
COMMENTS
a(n) is the least prime == 1 mod (6*n) and (for n >= 2) greater than a(n-1).
LINKS
EXAMPLE
a(5) = 151 because 151 is prime, 151-1 = 150 is divisible by 6*5, and 151 > a(4) = 73.
MAPLE
A:= Vector(100):
A[1]:= 7:
for n from 2 to 100 do
for k from floor((A[n-1]-1)/(6*n))+1 do
p:= 6*n*k+1;
if isprime(p) then A[n]:= p; break fi
od od:
convert(A, list);
MATHEMATICA
a[n_] := a[n] = Module[{p = If[n == 1, 2, NextPrime[a[n - 1]]]}, While[!Divisible[p - 1, 6*n], p = NextPrime[p]]; p]; Array[a, 50] (* Amiram Eldar, Jun 29 2022 *)
PROG
(Python)
from itertools import count, islice
from sympy import nextprime
def A355329_gen(): # generator of terms
p = 2
for m in count(6, 6):
while q:=(p-1)%m:
p = nextprime(p+m-q-1)
yield p
p = nextprime(p)
A355329_list = list(islice(A355329_gen(), 30)) # Chai Wah Wu, Jun 30 2022
CROSSREFS
Cf. A070850.
Sequence in context: A373544 A070850 A060211 * A133029 A243962 A287304
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jun 29 2022
STATUS
approved