login
A355308
Expansion of e.g.f. -LambertW(x^3/6 * (1 - exp(x))).
1
0, 0, 0, 0, 4, 10, 20, 35, 1176, 10164, 58920, 277365, 4472380, 69189406, 772011604, 6861855455, 95279504880, 1819310613800, 30768119885136, 430200439251369, 6770486332450740, 139958614722287410, 3033142442978720380, 58782387380290683571, 1138026666874389737544
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=1..floor(n/4)} k^(k-1) * Stirling2(n-3*k,k)/(6^k * (n-3*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(-lambertw(x^3/6*(1-exp(x))))))
(PARI) a(n) = n!*sum(k=1, n\4, k^(k-1)*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 24 2022
STATUS
approved