login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355245
Square array A(n, k), n, k >= 0, read by antidiagonals; for any m > 0, the position of the m-th rightmost 0 in the binary expansion of A(n, k) is the least of the positions of the m-th rightmost 0 in the binary expansions of n and k (the least significant bit having position 0).
2
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 1, 2, 1, 0, 0, 4, 2, 2, 4, 0, 0, 1, 4, 3, 4, 1, 0, 0, 2, 2, 4, 4, 2, 2, 0, 0, 1, 2, 5, 4, 5, 2, 1, 0, 0, 8, 2, 6, 4, 4, 6, 2, 8, 0, 0, 1, 8, 3, 4, 5, 4, 3, 8, 1, 0, 0, 2, 2, 8, 4, 6, 6, 4, 8, 2, 2, 0, 0, 1, 2, 9, 8, 5, 6, 5, 8, 9, 2, 1, 0
OFFSET
0,8
COMMENTS
Leading 0's are taken into account.
LINKS
FORMULA
A(n, k) = A(k, n).
A(m, A(n, k)) = A(A(m, n), k).
A(n, n) = n.
A(n, 0) = 0.
A(n, 1) = A006519(n) for any n > 0.
A(n, k) < 2^m for any n < 2^m and k < 2^m.
A(m, A355246(n, k)) = A355246(A(m, n), A(m, k)).
A355246(m, A(n, k)) = A(A355246(m, n), A355246(m, k)).
EXAMPLE
Array A(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
---+-----------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1
2| 0 2 2 2 4 2 2 2 8 2 2 2 4 2 2 2
3| 0 1 2 3 4 5 6 3 8 9 10 3 12 5 6 3
4| 0 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4
5| 0 1 2 5 4 5 6 5 8 9 10 5 12 5 6 5
6| 0 2 2 6 4 6 6 6 8 10 10 6 12 6 6 6
7| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 7
8| 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9| 0 1 2 9 4 9 10 9 8 9 10 9 12 9 10 9
10| 0 2 2 10 4 10 10 10 8 10 10 10 12 10 10 10
.
For n = 876 and k = 425:
- the corresponding binary expansions and pairings of 0's are as follows (stars indicate least positions of 0's):
* * *
876 ... 0 0 0 1 1 0 1 1 0 1 1 0 0
\ \ \ \ | / /
425 ... 0 0 0 0 1 1 0 1 0 1 0 0 1
* * * * * *
-----------------------------
428 ... 0 0 0 0 1 1 0 1 0 1 1 0 0
- so A(876, 425) = 428.
PROG
(PARI) A(n, k) = { my (v=0, zn=0, zk=0, w=1, b=1); while (n || k, if (n%2==0, zn++); if (k%2==0, zk++); if (max(zn, zk)==w, w++, v+=b); n\=2; k\=2; b*=2); v }
CROSSREFS
See A355246 for a similar sequence.
Cf. A006519.
Sequence in context: A263754 A328800 A328802 * A103822 A225927 A029392
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Jun 25 2022
STATUS
approved