login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355043
Expansion of the continued fraction 1 / (1-q-q^2 / (1-q-q^2-q^3 / (1-q-q^2-q^3-q^4 / (...))))
2
1, 1, 2, 4, 9, 21, 50, 121, 296, 730, 1811, 4513, 11285, 28294, 71088, 178904, 450840, 1137345, 2871720, 7256093, 18345060, 46403039, 117421762, 297232446, 752601692, 1906056161, 4828267801, 12232594912, 30996034963, 78549710061, 199079279640, 504596195477, 1279065489044
OFFSET
0,3
COMMENTS
Starts similar to A091964, terms differ after 730.
FORMULA
a(n) ~ c * d^n, where d = 2.5358790673564851880281667369326354455... and c = 0.14917782209027525483339419811881753... - Vaclav Kotesovec, Jun 16 2022
MATHEMATICA
nmax = 40; CoefficientList[Series[1/(1 - x - x^2/(1 - x - x^2 + ContinuedFractionK[-x^k, 1 - x*(1 - x^k)/(1 - x), {k, 3, nmax}])), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2022 *)
PROG
(PARI) N=44; q='q+O('q^N);
f(n) = 1 - sum(k=1, n-1, q^k);
s=1; forstep(j=N, 2, -1, s = q^j/s; s = f(j) - s ); s = 1/s;
Vec(s)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jun 16 2022
STATUS
approved