login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354986
a(n) = A047994(n) / gcd(A047994(n), A344005(n)).
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 1, 3, 2, 1, 1, 7, 1, 1, 1, 18, 1, 8, 1, 1, 20, 1, 12, 3, 1, 1, 2, 28, 1, 2, 1, 30, 32, 1, 1, 2, 1, 1, 32, 3, 1, 1, 4, 6, 2, 1, 1, 8, 1, 1, 16, 1, 48, 20, 1, 3, 44, 12, 1, 7, 1, 1, 2, 54, 20, 2, 1, 4, 1, 1, 1, 9, 32, 1, 56, 35, 1, 32, 72, 66, 2, 1, 72, 31, 1, 1, 20
OFFSET
1,12
COMMENTS
Numerator of fraction A047994(n) / A344005(n).
FORMULA
a(n) = A047994(n) / A354985(n) = A047994(n) / gcd(A047994(n), A344005(n)).
MATHEMATICA
s[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), n], m++]; m]; f[p_, e_] := p^e - 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; uphi[1] = 1; a[n_] := Numerator[uphi[n]/s[n]]; Array[a, 100] (* Amiram Eldar, Jun 16 2022 *)
PROG
(PARI)
A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005
A354986(n) = { my(u=A047994(n)); (u/gcd(u, A344005(n))); };
CROSSREFS
Cf. A047994, A344005, A346607, A346608 (positions of terms > 1), A354928 (positions of 1's), A354985, A354987 (denominators).
Sequence in context: A198941 A058955 A176055 * A072286 A007375 A294808
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Jun 16 2022
STATUS
approved