login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354942
a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * (-3)^(n-k).
2
1, -2, -13, 60, 1113, 1002, -149049, -1932696, 7188705, 676972566, 10821753819, -32865363468, -5892948042327, -144308265498270, -748826955982593, 74472859430936928, 3199088479682040129, 57854159449349840046, -654712764990637945725, -87482030500940669619156
OFFSET
0,2
FORMULA
Sum_{n>=0} a(n) * x^n / n!^3 = BesselI(0,2*sqrt(x)) * Sum_{n>=0} (-3)^n * x^n / n!^3.
MATHEMATICA
Table[Sum[Binomial[n, k]^3 k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}]
nmax = 19; CoefficientList[Series[BesselI[0, 2 Sqrt[x]] Sum[(-3)^k x^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^3 * k! * (-3)^(n-k)); \\ Michel Marcus, Jun 12 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 12 2022
STATUS
approved