login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354863
a(n) = n! * Sum_{d|n} (n/d) / d!.
4
1, 5, 19, 121, 601, 5641, 35281, 406561, 3447361, 45420481, 439084801, 7565564161, 80951270401, 1525654690561, 20737536019201, 421943967244801, 6046686277632001, 150482493928166401, 2311256907767808001, 61410502863943833601, 1132546296081328128001
OFFSET
1,2
FORMULA
E.g.f.: Sum_{k>0} k * (exp(x^k) - 1).
If p is prime, a(p) = 1 + p * p!.
MATHEMATICA
a[n_] := n! * DivisorSum[n, (n/#) / #! &]; Array[a, 21] (* Amiram Eldar, Aug 30 2023 *)
PROG
(PARI) a(n) = n!*sumdiv(n, d, n/d/d!);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k*(exp(x^k)-1))))
(Python)
from math import factorial
from sympy import divisors
def A354863(n):
f = factorial(n)
return sum(f*n//d//factorial(d) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 09 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 09 2022
STATUS
approved