login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: 4 = Sum_{n=-oo..oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
9

%I #16 Jan 19 2024 08:01:04

%S 3,28,756,28200,1205228,55731456,2714642292,137199520340,

%T 7127794098792,378292284479388,20421818573265728,1117886561607128940,

%U 61904487399635790288,3461693986652051482948,195203095905903229325340,11087371481682320212435332,633751222047605882649272600

%N G.f. A(x) satisfies: 4 = Sum_{n=-oo..oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2).

%H Paul D. Hanna, <a href="/A354664/b354664.txt">Table of n, a(n) for n = 0..400</a>

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:

%F (1) 4 = Sum_{n=-oo..oo} (-x)^(n*(n-1)/2) * A(x)^(n*(n+1)/2).

%F (2) 4 = Sum_{n>=0} (-x)^(n*(n-1)/2) * (1 - x^(2*n+1)) * A(x)^(n*(n+1)/2).

%F (3) 4 = Sum_{n>=0} (-1)^(n*(n+1)/2) * A(x)^(n*(n-1)/2) * (1 + A(x)^(2*n+1)) * x^(n*(n+1)/2).

%F (4) 4 = Product_{n>=1} (1 - (-x)^n*A(x)^n) * (1 + (-x)^(n-1)*A(x)^n) * (1 + (-x)^n*A(x)^(n-1)), by the Jacobi triple product identity.

%F a(n) = (-1)^n * Sum_{k=0..2*n+1} A354649(n,k)*4^k, for n >= 0.

%F a(n) = -Sum_{k=0..2*n+1} A354650(n,k)*(-4)^k, for n >= 0.

%F a(n) ~ c * d^n / n^(3/2), where d = 62.81220628370975097276726417958831026998790927499386157136003... and c = 0.71771306470564419436314253512374835316192083855385416486... - _Vaclav Kotesovec_, Jun 08 2022

%F Formula (4) can be rewritten as the functional equation QPochhammer(-x*y) * QPochhammer(1/x, -x*y)/(1 - 1/x) * QPochhammer(-1/y, -x*y)/(1 + 1/y) = 4. - _Vaclav Kotesovec_, Jan 19 2024

%e G.f.: A(x) = 3 + 28*x + 756*x^2 + 28200*x^3 + 1205228*x^4 + 55731456*x^5 + 2714642292*x^6 + 137199520340*x^7 + 7127794098792*x^8 + ...

%e such that A = A(x) satisfies:

%e (1) 4 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...

%e (2) 4 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...

%e (3) 4 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...

%e (4) 4 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...

%t (* Calculation of constant d: *) 1/r /. FindRoot[{r*s * QPochhammer[1/r, -r*s] * QPochhammer[-1/s, -r*s] * QPochhammer[-r*s]/((-1 + r)*(1 + s)) == 4, -4*(Log[-r*s] - (1 + s)*QPolyGamma[0, 1, -r*s] + (1 + s) * QPolyGamma[0, -Log[-s]/Log[-r*s], -r*s]) / (s*Log[-r*s]) + 4*r*(1 + s) * Derivative[0, 1][QPochhammer][1/r, -r*s] / QPochhammer[1/r, -r*s] + r^2*s*QPochhammer[1/r, -r*s]*QPochhammer[-r*s] * Derivative[0, 1][QPochhammer][-1/s, -r*s]/(-1 + r) + 4*r*(1 + s)*Derivative[0, 1][QPochhammer][-r*s, -r*s] / QPochhammer[-r*s] == 0}, {r, 1/50}, {s, 2}, WorkingPrecision -> 70] (* _Vaclav Kotesovec_, Jan 19 2024 *)

%o (PARI) {a(n) = my(A=[3]); for(i=1,n, A = concat(A,0);

%o A[#A] = -polcoeff(-4 + sum(m=0,sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );H=A;A[n+1]}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A354649, A354650, A354661, A354662, A354663, A268299, A354652, A354653, A354654.

%K nonn

%O 0,1

%A _Paul D. Hanna_, Jun 02 2022