login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354664
G.f. A(x) satisfies: 4 = Sum_{n=-oo..oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
9
3, 28, 756, 28200, 1205228, 55731456, 2714642292, 137199520340, 7127794098792, 378292284479388, 20421818573265728, 1117886561607128940, 61904487399635790288, 3461693986652051482948, 195203095905903229325340, 11087371481682320212435332, 633751222047605882649272600
OFFSET
0,1
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) 4 = Sum_{n=-oo..oo} (-x)^(n*(n-1)/2) * A(x)^(n*(n+1)/2).
(2) 4 = Sum_{n>=0} (-x)^(n*(n-1)/2) * (1 - x^(2*n+1)) * A(x)^(n*(n+1)/2).
(3) 4 = Sum_{n>=0} (-1)^(n*(n+1)/2) * A(x)^(n*(n-1)/2) * (1 + A(x)^(2*n+1)) * x^(n*(n+1)/2).
(4) 4 = Product_{n>=1} (1 - (-x)^n*A(x)^n) * (1 + (-x)^(n-1)*A(x)^n) * (1 + (-x)^n*A(x)^(n-1)), by the Jacobi triple product identity.
a(n) = (-1)^n * Sum_{k=0..2*n+1} A354649(n,k)*4^k, for n >= 0.
a(n) = -Sum_{k=0..2*n+1} A354650(n,k)*(-4)^k, for n >= 0.
a(n) ~ c * d^n / n^(3/2), where d = 62.81220628370975097276726417958831026998790927499386157136003... and c = 0.71771306470564419436314253512374835316192083855385416486... - Vaclav Kotesovec, Jun 08 2022
Formula (4) can be rewritten as the functional equation QPochhammer(-x*y) * QPochhammer(1/x, -x*y)/(1 - 1/x) * QPochhammer(-1/y, -x*y)/(1 + 1/y) = 4. - Vaclav Kotesovec, Jan 19 2024
EXAMPLE
G.f.: A(x) = 3 + 28*x + 756*x^2 + 28200*x^3 + 1205228*x^4 + 55731456*x^5 + 2714642292*x^6 + 137199520340*x^7 + 7127794098792*x^8 + ...
such that A = A(x) satisfies:
(1) 4 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...
(2) 4 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) 4 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
(4) 4 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...
MATHEMATICA
(* Calculation of constant d: *) 1/r /. FindRoot[{r*s * QPochhammer[1/r, -r*s] * QPochhammer[-1/s, -r*s] * QPochhammer[-r*s]/((-1 + r)*(1 + s)) == 4, -4*(Log[-r*s] - (1 + s)*QPolyGamma[0, 1, -r*s] + (1 + s) * QPolyGamma[0, -Log[-s]/Log[-r*s], -r*s]) / (s*Log[-r*s]) + 4*r*(1 + s) * Derivative[0, 1][QPochhammer][1/r, -r*s] / QPochhammer[1/r, -r*s] + r^2*s*QPochhammer[1/r, -r*s]*QPochhammer[-r*s] * Derivative[0, 1][QPochhammer][-1/s, -r*s]/(-1 + r) + 4*r*(1 + s)*Derivative[0, 1][QPochhammer][-r*s, -r*s] / QPochhammer[-r*s] == 0}, {r, 1/50}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
PROG
(PARI) {a(n) = my(A=[3]); for(i=1, n, A = concat(A, 0);
A[#A] = -polcoeff(-4 + sum(m=0, sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ), #A-1) ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 02 2022
STATUS
approved