login
A354560
Numbers k such that k, k+1 and k+2 are all divisible by the square of their largest prime factor.
2
1294298, 9841094, 158385500, 1947793550, 5833093013, 11587121710, 20944167840, 22979821310, 24604784814, 267631935500, 290672026412, 956544588350, 987988937343, 2399283556900, 2816075601855, 4174608151758, 4322550249043, 6789218799999, 10617595679778, 16036630184409
OFFSET
1,1
COMMENTS
Numbers k such that P(k)^2 | k, P(k+1)^2 | (k+1), and P(k+2)^2 | (k+2), where P(k) = A006530(k).
The data is from De Koninck and Moineau (2018).
LINKS
Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 277, entry 1294298.
Jean-Marie De Koninck and Matthieu Moineau, Consecutive Integers Divisible by a Power of their Largest Prime Factor, J. Integer Seq., Vol. 21 (2018), Article 18.9.3.
EXAMPLE
1294298 = 2 * 61 * 103^2 is a term since P(1294298) = 103 and 103^2 | 1294298, 1294299 = 3^4 * 19 * 29^2, P(1294299) = 29 and 29^2 | 1294299, 1294300 = 2^2 * 5^2 * 7 * 43^2, P(1294300) = 43 and 43^2 | 1294300.
CROSSREFS
Subsequence of A070003 and A354558.
Sequence in context: A206749 A244563 A163681 * A185776 A345083 A345084
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 30 2022
STATUS
approved