login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354524
Primes p such that p+1 is the concatenation of a power of 3 and a power of 2.
1
11, 13, 17, 31, 37, 97, 131, 163, 271, 277, 331, 811, 1511, 2437, 2731, 3511, 7297, 9127, 9511, 18191, 21871, 27127, 65617, 72931, 196831, 196837, 278191, 332767, 729511, 812047, 1262143, 1524287, 1968331, 2187511, 5314411, 5314417, 5904931, 6561127, 7298191, 15943237, 47829697, 53144131
OFFSET
1,1
LINKS
EXAMPLE
a(5) = 97 is a term because it is prime and 97 + 1 = 98 is the concatenation of 3^2 = 9 and 2^3 = 8.
MAPLE
M:= 10: # for terms with <= M digits
R:= NULL:
for i from 0 while 3^i < 10^(M-1) do
d:= 1+ilog10(3^i);
for j from 1 while 2^j < 10^(M-d) do
x:= dcat(3^i, 2^j)-1;
if isprime(x) then R:= R, x fi
od od:
sort([R]);
PROG
(Python)
from sympy import isprime
from itertools import count, takewhile
def auptod(digits):
M = 10**digits
pows2 = list(takewhile(lambda x: x < M , (2**a for a in count(0))))
pows3 = list(takewhile(lambda x: x < M , (3**b for b in count(0))))
strs2, strs3 = list(map(str, pows2)), list(map(str, pows3))
concat = (int(s3+s2) for s3 in strs3 for s2 in strs2)
return sorted(set(t-1 for t in concat if t < M and isprime(t-1)))
print(auptod(10)) # Michael S. Branicky, Aug 16 2022
CROSSREFS
Cf. A068801. Contains A068715.
Sequence in context: A266675 A185104 A240570 * A162237 A325870 A090236
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Aug 16 2022
STATUS
approved