login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A068801
Primes that can be formed by concatenating 2^a and 3^b.
2
11, 13, 19, 23, 29, 41, 43, 83, 89, 127, 163, 181, 227, 281, 641, 643, 827, 881, 1283, 1289, 1627, 2243, 2729, 4243, 4729, 6427, 6481, 8243, 10243, 16561, 16729, 20483, 26561, 40961, 42187, 81929, 86561, 102481, 163841, 166561, 219683, 326561, 327689, 859049
OFFSET
1,1
LINKS
EXAMPLE
8243 is a concatenation of 2^3 and 3^5. 10242187 is a term as a concatenation of 1024 (=2^10) and 2187(=3^7).
PROG
(Python)
from sympy import isprime
from itertools import count, takewhile
def auptod(digits):
M = 10**digits
pows2 = list(takewhile(lambda x: x < M , (2**a for a in count(0))))
pows3 = list(takewhile(lambda x: x < M , (3**b for b in count(0))))
strs2, strs3 = list(map(str, pows2)), list(map(str, pows3))
concat = (int(s2+s3) for s2 in strs2 for s3 in strs3)
return sorted(set(t for t in concat if t < M and isprime(t)))
print(auptod(6)) # Michael S. Branicky, Aug 17 2022
CROSSREFS
Sequence in context: A330696 A103803 A188677 * A215504 A342406 A109650
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Mar 05 2002
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 25 2002
a(43) and beyond from Michael S. Branicky, Aug 17 2022
STATUS
approved