%I #11 May 30 2022 10:30:32
%S 3,2,337,2633,14143,6108437,373777931
%N a(n) is the first prime that is the start of a sequence of exactly n primes under the map p -> p + A001414(p-1) + A001414(p+1).
%e a(3) = 337 because 337, 337+A001414(336)+A001414(338) = 383, and 383+A001414(382)+A001414(384) = 593 are prime, but 593+A001414(592)+A001414(594) = 660 is not prime, and 337 is the first prime for which this works.
%p spf:= proc(n) option remember; local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc:
%p f:= n -> spf(n-1)+n+spf(n+1):
%p g:= proc(n) option remember;
%p if not isprime(n) then return 0 fi;
%p 1 + procname(f(n))
%p end proc:
%p V:= Vector(7): count:= 0:
%p p:= 1:
%p while count < 7 do
%p p:= nextprime(p);
%p v:= g(p);
%p if V[v] = 0 then V[v]:= p; count:= count+1 fi;
%p od:
%p convert(V,list);
%t f[1] = 0; f[n_] := Plus @@ Times @@@ FactorInteger[n]; g[n_] := -1 + Length @ NestWhileList[# + f[# - 1] + f[# + 1] &, n, PrimeQ]; seq[len_, max_] := Module[{s = Table[0, {len}], c = 0, p = 1, i}, While[p < max && c < len, p = NextPrime[p]; i = g[p]; If[i <= len && s[[i]] == 0, c++; s[[i]] = p]]; s]; seq[6, 10^7] (* _Amiram Eldar_, May 29 2022 *)
%o (Python)
%o from sympy import factorint, isprime, nextprime
%o def A001414(n): return sum(p*e for p, e in factorint(n).items())
%o def f(p): return p + A001414(p-1) + A001414(p+1)
%o def a(n):
%o p, count = 1, 0
%o while count != n:
%o p = nextprime(p)
%o fp, count = f(p), 1
%o while isprime(fp): fp = f(fp); count += 1
%o return p
%o print([a(n) for n in range(1, 6)]) # _Michael S. Branicky_, May 29 2022
%Y Cf. A001414, A127305.
%K nonn,more
%O 1,1
%A _J. M. Bergot_ and _Robert Israel_, May 24 2022