The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A354386 a(n) is the first prime that is the start of a sequence of exactly n primes under the map p -> p + A001414(p-1) + A001414(p+1). 0
 3, 2, 337, 2633, 14143, 6108437, 373777931 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Table of n, a(n) for n=1..7. EXAMPLE a(3) = 337 because 337, 337+A001414(336)+A001414(338) = 383, and 383+A001414(382)+A001414(384) = 593 are prime, but 593+A001414(592)+A001414(594) = 660 is not prime, and 337 is the first prime for which this works. MAPLE spf:= proc(n) option remember; local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc: f:= n -> spf(n-1)+n+spf(n+1): g:= proc(n) option remember; if not isprime(n) then return 0 fi; 1 + procname(f(n)) end proc: V:= Vector(7): count:= 0: p:= 1: while count < 7 do p:= nextprime(p); v:= g(p); if V[v] = 0 then V[v]:= p; count:= count+1 fi; od: convert(V, list); MATHEMATICA f[1] = 0; f[n_] := Plus @@ Times @@@ FactorInteger[n]; g[n_] := -1 + Length @ NestWhileList[# + f[# - 1] + f[# + 1] &, n, PrimeQ]; seq[len_, max_] := Module[{s = Table[0, {len}], c = 0, p = 1, i}, While[p < max && c < len, p = NextPrime[p]; i = g[p]; If[i <= len && s[[i]] == 0, c++; s[[i]] = p]]; s]; seq[6, 10^7] (* Amiram Eldar, May 29 2022 *) PROG (Python) from sympy import factorint, isprime, nextprime def A001414(n): return sum(p*e for p, e in factorint(n).items()) def f(p): return p + A001414(p-1) + A001414(p+1) def a(n): p, count = 1, 0 while count != n: p = nextprime(p) fp, count = f(p), 1 while isprime(fp): fp = f(fp); count += 1 return p print([a(n) for n in range(1, 6)]) # Michael S. Branicky, May 29 2022 CROSSREFS Cf. A001414, A127305. Sequence in context: A037057 A065585 A139737 * A036113 A226840 A334885 Adjacent sequences: A354383 A354384 A354385 * A354387 A354388 A354389 KEYWORD nonn,more AUTHOR J. M. Bergot and Robert Israel, May 24 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 18:37 EDT 2024. Contains 372664 sequences. (Running on oeis4.)