Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 08 2022 10:18:18
%S 1,-2,-6,0,-30,12,-210,0,0,60,-2310,0,-30030,420,180,0,-510510,0,
%T -9699690,0,1260,4620,-223092870,0,0,60060,0,0,-6469693230,-360,
%U -200560490130,0,13860,1021020,6300,0,-7420738134810,19399380,180180,0,-304250263527210,-2520,-13082761331670030,0,0,446185740,-614889782588491410
%N Dirichlet inverse of A108951, primorial inflation of n.
%C Multiplicative with a(p^e) = 0 if e > 1, and -A034386(p) otherwise.
%H Antti Karttunen, <a href="/A354351/b354351.txt">Table of n, a(n) for n = 1..2355</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F a(n) = A008683(n) * A108951(n).
%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d < n} A108951(n/d) * a(d).
%F a(n) = A354352(n) - A108951(n).
%o (PARI)
%o A002110(n) = prod(i=1,n,prime(i));
%o A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) }; \\ From A108951
%o A354351(n) = (moebius(n)*A108951(n));
%Y Cf. A002110, A008683, A013929 (positions of 0's), A034386, A108951, A354352.
%Y Cf. also A347379, A354186, A354349, A354359, A354365, A354366.
%K sign,mult
%O 1,2
%A _Antti Karttunen_, Jun 05 2022