login
A354188
a(n) = 1 if phi(A267099(n)) is equal to phi(n), and 0 otherwise. Here A267099 is fully multiplicative involution swapping the positions of 4k+1 and 4k+3 primes, and phi is Euler totient function.
4
1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = 1 if A354101(n) = 0, and 0 otherwise.
a(n) = [A000010(n) == A354102(n)], where [ ] is the Iverson bracket.
a(n) <= A354108(n).
PROG
(PARI) A354188(n) = (eulerphi(A267099(n)) == eulerphi(n)); \\ Uses the program given in A267099.
CROSSREFS
Characteristic function of A354189.
Sequence in context: A036987 A379502 A354193 * A342025 A353518 A353687
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 19 2022
STATUS
approved