OFFSET
1,2
COMMENTS
Terms (1, 2, 4) followed by A033949, positive integers that do not have a primitive root.
Also numbers n for which A353768(n) and A353768(A267099(n)) are equal. Proof: if n is an odd prime power or twice such a number, then the odd prime factor in A267099(n) is in the opposite side of 4k+1 / 4k+3 divide of that of the odd prime factor of n, and subtracting one from it will give a number of the form 4k+0 in the other case, and 4k+2 in the other case, and either 4k != 4k+2 (mod 4) when the prime factor is unitary, or then 4k*(4k+1) != (4k+2)*(4k+3) (mod 4), when the odd prime has exponent > 1, so none of such n occur in this sequence. On the other hand, if n has more than two distinct odd prime factors, p and q, then (p-1)(q-1) == 0 (mod 4), or if n is a multiple of 4, then as phi(4) = 2 and phi(2^k) == 0 (mod 4) for k > 2, and with (p-1) giving at least one instance of factor 2, then both A267099(n) and n are guaranteed to be multiples of 4, regardless of whether p (and q) is (are) of the form 4k+1 or 4k+3.
MATHEMATICA
q[n_] := ! (OddQ[n] && PrimePowerQ[n]) && ! (OddQ[n/2] && PrimePowerQ[n/2]); Select[Range[135], q] (* Amiram Eldar, May 20 2022 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 18 2022
STATUS
approved