login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular table read by rows: T(n,k) is the number of solutions to x^k == 1 (mod n), 1 <= k <= psi(n), psi = A002322.
3

%I #13 May 22 2022 00:00:17

%S 1,1,1,2,1,2,1,2,1,4,1,2,1,2,3,2,1,6,1,4,1,2,3,2,1,6,1,2,1,4,1,2,1,2,

%T 5,2,1,2,1,10,1,4,1,2,3,4,1,6,1,4,3,2,1,12,1,2,3,2,1,6,1,4,1,8,1,4,1,

%U 8,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,16

%N Irregular table read by rows: T(n,k) is the number of solutions to x^k == 1 (mod n), 1 <= k <= psi(n), psi = A002322.

%C Row n and Row n' are the same if and only if (Z/nZ)* = (Z/n'Z)*, where (Z/nZ)* is the multiplicative group of integers modulo m.

%C Given n, T(n,k) only depends on gcd(k,psi(n)).

%H Jianing Song, <a href="/A354060/b354060.txt">Table of n, a(n) for n = 1..8346</a> (the first 200 rows)

%F If (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then T(n,k) = Product_{i=1..r} gcd(k,k_r).

%F T(p^e,k) = gcd((p-1)*p^(e-1),k) for odd primes p. T(2,k) = 1, T(2^e,k) = 2*gcd(2^(e-2),k) if k is even and 1 if k is odd.

%e Table starts

%e n = 1: 1;

%e n = 2: 1;

%e n = 3: 1, 2;

%e n = 4: 1, 2;

%e n = 5: 1, 2, 1, 4;

%e n = 6: 1, 2;

%e n = 7: 1, 2, 3, 2, 1, 6;

%e n = 8: 1, 4;

%e n = 9: 1, 2, 3, 2, 1, 6;

%e n = 10: 1, 2, 1, 4;

%e n = 11: 1, 2, 1, 2, 5, 2, 1, 2, 1, 10;

%e n = 12: 1, 4;

%e n = 13: 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12;

%e n = 14: 1, 2, 3, 2, 1, 6;

%e n = 15: 1, 4, 1, 8;

%e n = 16: 1, 4, 1, 8;

%e n = 17: 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16;

%e n = 18: 1, 2, 3, 2, 1, 6;

%e n = 19: 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18;

%e n = 20: 1, 4, 1, 8;

%e ...

%o (PARI) T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))

%Y Cf. A354057, A002322, A354061.

%K nonn,tabf

%O 1,4

%A _Jianing Song_, May 16 2022