login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354060
Irregular table read by rows: T(n,k) is the number of solutions to x^k == 1 (mod n), 1 <= k <= psi(n), psi = A002322.
3
1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 3, 2, 1, 6, 1, 2, 1, 4, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 4, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 4, 1, 8, 1, 4, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16
OFFSET
1,4
COMMENTS
Row n and Row n' are the same if and only if (Z/nZ)* = (Z/n'Z)*, where (Z/nZ)* is the multiplicative group of integers modulo m.
Given n, T(n,k) only depends on gcd(k,psi(n)).
LINKS
Jianing Song, Table of n, a(n) for n = 1..8346 (the first 200 rows)
FORMULA
If (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then T(n,k) = Product_{i=1..r} gcd(k,k_r).
T(p^e,k) = gcd((p-1)*p^(e-1),k) for odd primes p. T(2,k) = 1, T(2^e,k) = 2*gcd(2^(e-2),k) if k is even and 1 if k is odd.
EXAMPLE
Table starts
n = 1: 1;
n = 2: 1;
n = 3: 1, 2;
n = 4: 1, 2;
n = 5: 1, 2, 1, 4;
n = 6: 1, 2;
n = 7: 1, 2, 3, 2, 1, 6;
n = 8: 1, 4;
n = 9: 1, 2, 3, 2, 1, 6;
n = 10: 1, 2, 1, 4;
n = 11: 1, 2, 1, 2, 5, 2, 1, 2, 1, 10;
n = 12: 1, 4;
n = 13: 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12;
n = 14: 1, 2, 3, 2, 1, 6;
n = 15: 1, 4, 1, 8;
n = 16: 1, 4, 1, 8;
n = 17: 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16;
n = 18: 1, 2, 3, 2, 1, 6;
n = 19: 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18;
n = 20: 1, 4, 1, 8;
...
PROG
(PARI) T(n, k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Jianing Song, May 16 2022
STATUS
approved