|
|
A354026
|
|
Primes that divide some k dividing 4^k + 3^k (A045584).
|
|
1
|
|
|
7, 379, 14407, 689431, 4235659, 41647747, 137534083, 239900179, 242121643, 349909477, 1245283747, 1478065891, 1605314383, 2500276549, 2748751303, 5618210347, 7490947129
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Prime p > 3 is in this sequence iff all prime factors of the multiplicative order of -3/4 modulo p belong to this sequence.
|
|
LINKS
|
Table of n, a(n) for n=1..17.
|
|
PROG
|
(PARI) forprime(p=5, oo, f=Set(factor(znorder(Mod(-3/4, p)))[, 1]); if(#setintersect(S, f)==#f, S=setunion(S, [p]); print1(p, ", ")) );
|
|
CROSSREFS
|
Cf. A045584, A023394, A066364, A087807, A129729, A134360, A171980, A354027.
Sequence in context: A250345 A201114 A027510 * A232454 A140638 A299036
Adjacent sequences: A354023 A354024 A354025 * A354027 A354028 A354029
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Max Alekseyev, May 15 2022
|
|
STATUS
|
approved
|
|
|
|