login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353959
a(n) = Sum_{d|n} d * (-1)^(d'), where d' is the arithmetic derivative of d (A003415).
0
1, -1, -2, 3, -4, -10, -6, 11, 7, -16, -10, 6, -12, -22, 8, 27, -16, -19, -18, 8, 12, -34, -22, 38, 21, -40, -20, 10, -28, -40, -30, 59, 20, -52, 24, 33, -36, -58, 24, 56, -40, -52, -42, 14, -28, -70, -46, 102, 43, -41, 32, 16, -52, -100, 40, 74, 36, -88, -58, 56, -60, -94
OFFSET
1,3
MATHEMATICA
d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := DivisorSum[n, # * (-1)^d[#] &]; Array[a, 100] (* Amiram Eldar, May 12 2022 *)
PROG
(PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
a(n) = sumdiv(n, d, d*(-1)^ad(d)); \\ Michel Marcus, May 12 2022
CROSSREFS
Cf. A000005 (tau), A003415 (n').
Sequence in context: A065634 A364223 A087548 * A242488 A111619 A241083
KEYWORD
sign
AUTHOR
Wesley Ivan Hurt, May 12 2022
STATUS
approved