OFFSET
0,1
COMMENTS
There are n terms in the n-th group v(n), from 1 / ((n^2-n+2)/2) up to 1 / ((n^2+n)/2).
As |v(n+1)| < |v(n)|, this series is convergent according to the alternating series test.
REFERENCES
Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, 1997, Exercice 3.3.19 pp. 285 and 303 .
LINKS
user115748, Power series x^n/n with one plus, then two minuses, then three plusses, and so on, MathOverflow, Jan 2024.
FORMULA
EXAMPLE
0.517100379042401725064810772131357...
MAPLE
evalf(sum(sum((-1)^(n+1)/k, k= (n^2-n+2)/2..(n^2+n)/2), n=1..infinity), 100);
PROG
(PARI) sumalt(n=1, (-1)^(n+1)*sum(k=(n^2-n+2)/2, (n^2+n)/2, 1/k)) \\ Michel Marcus, May 09 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, May 09 2022
STATUS
approved