login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353790
a(n) = A353749(sigma(A003961(n))), where A353749(k) = phi(k) * A064989(k), and A064989 shifts the prime factorization one step towards lower primes, while A003961 shifts the factorization one step towards higher primes.
8
1, 2, 4, 132, 4, 16, 8, 48, 870, 16, 30, 528, 24, 32, 32, 5390, 24, 1740, 16, 528, 96, 120, 48, 384, 1224, 96, 1056, 1056, 16, 128, 306, 7920, 240, 96, 64, 114840, 120, 64, 288, 384, 140, 384, 32, 3960, 3480, 192, 144, 21560, 9180, 2448, 192, 3168, 96, 4224, 240, 768, 192, 64, 870, 4224, 416, 1224, 6960, 1191372, 192
OFFSET
1,2
COMMENTS
See comments in A353789.
FORMULA
a(n) = A353750(A003961(n)) = A326042(n) * A353767(n).
a(n) = A000010(A003973(n)) * A064989(A003973(n)).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A353790(n) = { my(s=sigma(A003961(n))); (eulerphi(s)*A064989(s)); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 10 2022
STATUS
approved