login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(n, A351546(n)).
4

%I #11 May 07 2022 16:33:41

%S 1,1,1,1,1,2,1,1,1,2,1,4,1,2,3,1,1,1,1,2,1,2,1,4,1,2,1,28,1,2,1,1,3,2,

%T 1,1,1,2,1,10,1,2,1,4,3,2,1,4,1,1,3,2,1,2,1,8,1,2,1,4,1,2,1,1,1,2,1,2,

%U 3,2,1,1,1,2,1,4,1,2,1,2,1,2,1,28,1,2,3,4,1,2,7,4,1,2,5,4,1,1,3,1,1,2,1,2,3

%N a(n) = gcd(n, A351546(n)).

%H Antti Karttunen, <a href="/A353666/b353666.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = gcd(n, A351546(n)).

%F a(n) = n / A353667(n) = A351546(n) / A353668(n).

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A351546(n) = { my(f=factor(sigma(n)), u=A003961(n)); prod(k=1, #f~, f[k, 1]^((0!=(u%f[k, 1]))*f[k, 2])); };

%o A353666(n) = gcd(n, A351546(n));

%Y Cf. A351546, A353667, A353668.

%Y Differs from A353688 for the first time at n = 28, 30, 40, 60, 66, 84, 90, 102, 120, ...

%K nonn

%O 1,6

%A _Antti Karttunen_, May 04 2022