login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353651
Unique monotonic sequence of positive integers satisfying a(a(n)) = k*(n-1) + 3, where k = 4.
5
2, 3, 7, 8, 9, 10, 11, 15, 19, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125
OFFSET
1,1
COMMENTS
Numbers m such that the base-4 representation of (3*m-1) starts with 11 or 12 or 13 or ends with 0.
First differences give a run of 4^i 1's followed by a run of 4^i 4's, for i = 0, 1, 2, ...
FORMULA
For n in the range (2*4^i + 1)/3 < n <= (5*4^i + 1)/3, for i >= 0:
a(n) = n + 4^i.
a(n) = 1 + a(n-1).
Otherwise, for n in the range (5*4^i + 1)/3 < n <= (8*4^i + 1)/3, for i >= 0:
a(n) = 4*(n - 4^i) - 1.
a(n) = 4 + a(n-1).
EXAMPLE
a(6) = 10 because (2*4^1 + 1)/3 < 6 <= (5*4^1 + 1)/3, hence a(6) = 6 + 4^1 = 10;
a(9) = 19 because (5*4^1 + 1)/3 < 9 <= (8*4^1 + 1)/3, hence a(9) = 4*(9 - 4^1) - 1 = 19.
MAPLE
isA353651 := proc(n)
if modp(n, 4) = 3 then
true;
else
b4 := convert(3*n-1, base, 4) ;
if op(-1, b4) = 1 and op(-2, b4) <> 0 then
true ;
else
false;
end if;
end if;
end proc:
for n from 2 to 122 do
if isA353651(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jul 05 2022
PROG
(PARI) a(n) = my(n3=3*n, s=logint(n3>>1, 4)<<1); if(n3>>s < 5, n + 1<<s, 4*(n - 1<<s) - 1); \\ Kevin Ryde, Apr 15 2022
(C++)
/* program used to generate the b-file */
#include<iostream>
using namespace std;
int main(){
int cnt1=1, flag=0, cnt2=1, a=2;
for(int n=1; n<=10000; n++) {
cout<<n<<" "<<a<<endl;
if(cnt2==cnt1) {
flag=1-flag, cnt1=1;
if(flag) a+=1;
else {
a+=4;
cnt2*=4;
}
}
else {
cnt1++;
a+=(flag?4:1);
}
}
return 0;
}
CROSSREFS
For other values of k: A080637 (k=2), A003605 (k=3), this sequence (k=4), A353652 (k=5), A353653 (k=6).
Sequence in context: A228088 A299497 A047534 * A326979 A326874 A118374
KEYWORD
nonn,easy
AUTHOR
Yifan Xie, May 02 2022
STATUS
approved