login
A353439
Integers m such that the decimal expansion of 1/m contains the digit 3.
7
3, 12, 13, 17, 19, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 81, 83, 85, 87, 88, 89, 92, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107, 109, 113, 114, 115, 116
OFFSET
1,1
COMMENTS
If m is a term, 10*m is also a term, so terms with no trailing zeros are all primitive terms.
EXAMPLE
m = 12 is a term since 1/12 = 0.083333333333... (here, 3 is the smallest digit).
m = 13 is a term since 1/13 = 0.076923076923...
m = 75 is a term since 1/15 = 0.013333333333... (here, 3 is the largest digit).
MATHEMATICA
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 125, MemberQ[f@#, 3] &]
CROSSREFS
A350814 (largest digit=3) and A352157 (smallest digit=3) are subsequences.
Similar with digit k: A352154 (k=0), A353437 (k=1), A353438 (k=2), this sequence (k=3), A353440 (k=4), A353441 (k=5), A353442 (k=6), A353443 (k=7), A353444 (k=8), A333237 (k=9).
Sequence in context: A024546 A073542 A063444 * A117061 A341799 A089919
KEYWORD
nonn,base
AUTHOR
STATUS
approved