Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 20 2022 22:48:30
%S 1,1,1,1,3,3,4,1,1,4,5,3,7,5,3,1,8,8,10,4,4,7,11,3,8,8,1,5,13,14,16,1,
%T 5,10,14,8,17,11,7,4,20,18,22,7,3,13,23,3,17,17,8,8,25,22,18,5,10,16,
%U 28,14,31,17,4,1,26,26,32,10,11,26,35,8,37,20,8,11,26,30,38,4,1,22,41,18,30,23,13,7,43,42
%N a(n) = A113415(A252463(n)), where A113415 is the arithmetic mean between the number of odd divisors and their sum, and A252463 is the hybrid shift.
%C Arithmetic mean between A320107(n) and A353416(n).
%H Antti Karttunen, <a href="/A353417/b353417.txt">Table of n, a(n) for n = 1..16384</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = A113415(A252463(n)) = A113415(A353412(n)).
%F a(n) = (1/2) * (A320107(n) + A353416(n)).
%F a(2*n) = A113415(n).
%o (PARI)
%o A000265(n) = (n>>valuation(n,2));
%o A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o A252463(n) = if(!(n%2),n/2,A064989(n));
%o A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
%o A353417(n) = A113415(A252463(n));
%Y Cf. A000203, A064989, A113415 (even bisection), A252463, A320107, A353412, A353416.
%K nonn
%O 1,5
%A _Antti Karttunen_, Apr 20 2022