login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353262
Expansion of Sum_{k>=0} x^(2*k)/Product_{j=1..k} (1 - 3 * j * x).
3
1, 0, 1, 3, 10, 36, 145, 666, 3466, 19956, 124111, 821601, 5755987, 42634089, 333827776, 2759262897, 24000288202, 218806121205, 2082848200057, 20639203885008, 212441617055458, 2268057343273491, 25085332185250564, 287096974919978292, 3395697093278589844
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * Stirling2(n-k,k).
MATHEMATICA
a[n_] := Sum[3^(n-2*k) * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/prod(j=1, k, 1-3*j*x)))
(PARI) a(n) = sum(k=0, n\2, 3^(n-2*k)*stirling(n-k, k, 2));
CROSSREFS
Cf. A353256.
Sequence in context: A162162 A149042 A081921 * A165792 A010373 A322726
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 09 2022
STATUS
approved