login
A353109
Array read by antidiagonals: A(n, k) is the digital root of n*k with n >= 0 and k >= 0.
6
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 1, 3, 3, 1, 6, 0, 0, 7, 3, 6, 7, 6, 3, 7, 0, 0, 8, 5, 9, 2, 2, 9, 5, 8, 0, 0, 9, 7, 3, 6, 7, 6, 3, 7, 9, 0, 0, 1, 9, 6, 1, 3, 3, 1, 6, 9, 1, 0, 0, 2, 2, 9, 5, 8, 9, 8, 5, 9, 2, 2, 0
OFFSET
0,8
FORMULA
A(n, k) = A010888(A004247(n, k)).
A(n, k) = A010888(A003991(n, k)) for n*k > 0.
EXAMPLE
The array begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 4, 6, 8, 1, 3, 5, ...
0, 3, 6, 9, 3, 6, 9, 3, ...
0, 4, 8, 3, 7, 2, 6, 1, ...
0, 5, 1, 6, 2, 7, 3, 8, ...
0, 6, 3, 9, 6, 3, 9, 6, ...
0, 7, 5, 3, 1, 8, 6, 4, ...
...
MATHEMATICA
A[i_, j_]:=If[i*j==0, 0, 1+Mod[i*j-1, 9]]; Flatten[Table[A[n-k, k], {n, 0, 12}, {k, 0, n}]]
PROG
(PARI) T(n, k) = if (n && k, (n*k-1)%9+1, 0); \\ Michel Marcus, May 12 2022
CROSSREFS
Cf. A003991, A004247, A010888, A056992 (diagonal), A073636, A139413, A180592, A180593, A180594, A180595, A180596, A180597, A180598, A180599, A303296, A336225, A353128 (antidiagonal sums), A353933, A353974 (partial sum of the main diagonal).
Sequence in context: A048720 A067138 A059692 * A336225 A004247 A271916
KEYWORD
nonn,tabl,base,easy
AUTHOR
Stefano Spezia, Apr 24 2022
STATUS
approved