login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353059
Integers k such that the prime factorization of k uses digits from a proper subset of the digits of k.
0
143, 187, 341, 351, 451, 671, 781, 1023, 1024, 1057, 1207, 1243, 1324, 1352, 1372, 1375, 1379, 1703, 1982, 2139, 2176, 2189, 2317, 2321, 2510, 2519, 2816, 3051, 3125, 3159, 3375, 3421, 3641, 3861, 4232, 5102, 5210, 6182, 6272, 7819, 8197, 8921, 9251, 9317, 9481, 9531
OFFSET
1,1
COMMENTS
All numbers in this sequence are composite.
EXAMPLE
143 = 11^1 * 13^1: the number itself uses digits 1, 3, and 4, while the prime factorization uses the subset of digits: 1 and 3. Thus, 143 is in this sequence.
25 = 5^2. Both the number and the prime factorization use the same set of digits. Thus, 25 is not in this sequence.
MATHEMATICA
Select[Range[10000], SubsetQ[Union[IntegerDigits[#]], Union[Flatten[IntegerDigits[FactorInteger[#]]]]] && Length[Union[IntegerDigits[#]]] > Length[Union[Flatten[IntegerDigits[FactorInteger[#]]]]] &]
PROG
(Python)
from sympy import factorint
def ok(n): return set("".join(str(p)+str(e) for p, e in factorint(n).items())) < set(str(n))
print([k for k in range(2, 9999) if ok(k)]) # Michael S. Branicky, Apr 20 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova, Apr 20 2022
STATUS
approved