login
A353054
Numbers k such that placing the last digit first gives 2k+1.
1
1052, 26315, 15789473, 3157894736, 421052631578, 2105263157894, 36842105263157, 1052631578947368421052, 26315789473684210526315, 15789473684210526315789473, 3157894736842105263157894736, 421052631578947368421052631578, 2105263157894736842105263157894, 36842105263157894736842105263157
OFFSET
1,1
COMMENTS
The digits of all terms appear to be a substring of the digits 105263157894736842 (= A092697(2)) repeated. - Chai Wah Wu, Apr 23 2022
LINKS
EXAMPLE
2*1052 + 1 = 2105. Thus, 1052 is in this sequence.
MATHEMATICA
Select[Range[100000000], FromDigits[Prepend[Drop[IntegerDigits[#], -1], Last[IntegerDigits[#]]]] == 2 # + 1 &]
PROG
(PARI) f(n) = if (n < 10, n, my(d=digits(n)); fromdigits(concat(d[#d], Vec(d, #d-1))));
isok(m) = f(m) == 2*m+1; \\ Michel Marcus, Apr 21 2022
(Python)
from itertools import count, islice
def A353054_gen(): # generator of terms
for l in count(1):
a, b = 10**l-2, 10**(l-1)-2
for m in range(1, 10):
q, r = divmod(m*a-1, 19)
if r == 0 and b <= q - 2 <= a:
yield 10*q+m
A353054_list = list(islice(A353054_gen(), 20)) # Chai Wah Wu, Apr 23 2022
CROSSREFS
Other "rotate right" sequences: A035126, A035130.
Subsequence of A034180.
Sequence in context: A252609 A185680 A191858 * A090005 A339249 A359624
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova, Apr 20 2022
EXTENSIONS
a(4)-a(7) from Amiram Eldar, Apr 22 2022
a(8)-a(14) from Chai Wah Wu, Apr 23 2022
STATUS
approved