Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jun 17 2022 15:55:17
%S 12,108,600,2664,10404,37476,127920,420768,1348476,4242204,13169160,
%T 40490712,123635028,375623892,1137095520,3433306896,10347106860,
%U 31141984140,93639862200,281372571720,845074016772,2537235316548,7615933808400,22856659795584,68588501433564
%N Number of length n words on alphabet {0,1,2} that contain each of the subwords 01, 02, 10, 12, 20, and 21 as (not necessarily contiguous) subwords.
%C Let A be an alphabet containing m letters. Let S be the set of m^2-m ordered two-tuples of distinct letters in A. The generating function for the number of length n words on A that contain each two-tuple in S as a (not necessarily contiguous) subword is m*(m-1)!^2*x^(2*m-1)/((1-m*x)*Product_{k=1..m-1} (1-k*x)^2).
%C Appears to equal 12 times A222993, except that sequence only has a conjectured formula. - _N. J. A. Sloane_, Jun 17 2022
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-31,51,-40,12).
%F G.f.: (12*x^5)/((1 - 2*x)^2*(1 - x)^2*(1 - 3*x)).
%e a(5) = 12 because we have: {0, 1, 2, 0, 1}, {0, 1, 2, 1, 0}, {0, 2, 1, 0, 2}, {0, 2, 1, 2, 0}, {1, 0, 2, 0, 1}, {1, 0, 2, 1, 0}, {1, 2, 0, 1, 2}, {1, 2, 0, 2, 1}, {2, 0, 1, 0, 2}, {2, 0, 1, 2, 0}, {2, 1, 0, 1, 2}, {2, 1, 0, 2, 1}.
%t nn = 15; vertices = Level[Outer[ List, {a, b, c}, {d, e, f}, {h, i, j}, {k, l, m}, {n, o, p}, {q, r, s}], {6}]; x = {a -> b, d -> e, i -> j, o -> p}; y = {b -> c, h -> i, k -> l, r -> s}; z = {e -> f, l -> m, n -> o, q -> r}; replacementlist = Table[vertices[[kk]] -> kk, {kk, 1, 729}]; G= Normal[SparseArray[Flatten[Table[Normal[Merge[ Map[{mm, vertices[[mm]] /. # /. replacementlist} -> 1 &, {x, y, z}], Total]], {mm, 1, 729}]]]]; Iwg =
%t Inverse[IdentityMatrix[729] - w G]; CoefficientList[ Series[Iwg[[1, 729]], {w, 0, nn}], w]
%Y Cf. A058809, A222993, A005803 (binary words).
%K nonn,easy
%O 5,1
%A _Geoffrey Critzer_, Apr 19 2022