|
|
A353045
|
|
Primes of the form p*q*(p+q)+1 where (p,q) is a twin prime pair.
|
|
1
|
|
|
421, 3433, 431881, 746353, 2122213, 84287689, 161242273, 574990681, 1372256173, 6589289569, 8315492209, 13246972549, 40692828541, 52396140061, 75866105281, 77916431221, 82987207333, 91919299573, 140685402049, 152665872493, 188144420089, 199536434869, 265301989801, 404110652329, 406594932241
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
a(3) = 431881 is a term because (59, 61) is a twin prime pair with 59*61*(59+61)+1 = 431881, and 431881 is prime.
|
|
MAPLE
|
P:= select(isprime, {seq(i, i=3..10^6, 2)}):
T:= P intersect map(`-`, P, 2):
R:= map(t -> t*(t+2)*(2*t+2)+1, T):
sort(convert(select(isprime, R), list));
|
|
MATHEMATICA
|
Select[#[[1]]#[[2]]Total[#]+1&/@Select[Partition[Prime[Range[1000]], 2, 1], #[[2]]-#[[1]] == 2&], PrimeQ] (* Harvey P. Dale, Aug 17 2024 *)
|
|
PROG
|
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen(): # generator of terms
p, q = 3, 5
while True:
if q == p+2:
t = p*q*(p+q)+1
if isprime(t):
yield t
p, q = q, nextprime(q)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|