OFFSET
1,3
COMMENTS
For n > 33, a(64) = 6890624 is the only positive term <= 10^8.
There is no number m <= 10^10 that is the first start of run of 3 consecutive integers m, m+1 and m+2 with triplet [tau(m), tau(m+1), tau(m+2)] = [tau(m), tau(m) - 1, tau(m) - 2].
If a(11) > 0 then a(11) > 10^100. - Charles R Greathouse IV, Apr 20 2022
a(36) = 1626347583, a(40) = 1173953168, a(49) = 304006671424, a(65) = 25221297570561, a(81) = 15579533124, a(96) = 68195356770303, a(100) = 1698353697680, a(136) = 28528257204224, a(256) = 334435516415. - Jon E. Schoenfield, Apr 24 2022
From Jon E. Schoenfield, May 01 2022: (Start)
a(35) is the smallest m such that m = 16*p^6 = q^16*r - 1 where p, q, and r are odd primes; a(35) <= 16*123024356097427^6 (an 86-digit number).
a(37) = a(38) = 0;
a(39) <= 1134572901070399771884918212890624;
a(41) <= 350847983^40 (a 342-digit number). (End)
EXAMPLE
For n = 5; a(5) = 81 because 81 is the smallest number m such that tau(m) = tau(81) = 5 and tau(82) = tau(m) - 1 = 4.
PROG
(Magma) Ax:=func<n|exists(r){m: m in[1..10^6] | #Divisors(m) eq #Divisors(m + 1) + 1 and #Divisors(m) eq n} select r else 0>; [Ax(n): n in [1..5]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 18 2022
EXTENSIONS
a(6)-a(8) from Jon E. Schoenfield, Apr 20 2022
a(9)-a(10), a(16), a(21)-a(22), a(28), a(33) from Jaroslav Krizek, Apr 20 2022
Remaining terms through a(34) from Jon E. Schoenfield, Apr 30 2022
a(35) from Jinyuan Wang, May 21 2022
STATUS
approved