login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352776
Numbers k such that w(k + w(k)) = w(k), where w(k) is the binary weight of k, A000120(k).
0
0, 1, 3, 10, 11, 18, 19, 22, 23, 25, 34, 35, 38, 39, 41, 49, 53, 54, 66, 67, 70, 71, 73, 81, 85, 86, 97, 101, 102, 110, 116, 117, 119, 130, 131, 134, 135, 137, 145, 149, 150, 161, 165, 166, 174, 180, 181, 183, 193, 197, 198, 206, 212, 213, 215, 228, 229, 231, 236, 237, 243, 246, 247, 258, 259, 262, 263, 265, 273
OFFSET
1,3
COMMENTS
w(k + w(k)) - w(k) = 0 this sequence, w(k + w(k)) - w(k) = 2 for k = 4*j, where A000120(j) = 3.
FORMULA
k : A000120(A092391(k)) = A000120(k); A348367(k) = A000120(k).
EXAMPLE
k = 18; A000120(18 + A000120(18)) = A000120(18), thus k = 18 is a term.
MATHEMATICA
w[n_] := DigitCount[n, 2, 1]; Select[Range[0, 300], w[# + w[#]] == w[#] &] (* Amiram Eldar, Apr 02 2022 *)
PROG
(Python)
def w(n): return bin(n).count("1")
def ok(n): wn = w(n); return w(n + wn) == wn
print([k for k in range(274) if ok(k)]) # Michael S. Branicky, Apr 02 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Ctibor O. Zizka, Apr 02 2022
STATUS
approved