login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352775
a(n) = pi(n) * (Sum_{n <= q < 2n, q prime} q) + (pi(2n-1) - pi(n-1)) * (Sum_{p <= n, p prime} p).
2
0, 9, 26, 34, 56, 74, 175, 130, 215, 308, 412, 472, 596, 477, 692, 919, 1123, 946, 1497, 1268, 1673, 2094, 2436, 2652, 2652, 2652, 3229, 3229, 3713, 4013, 5372, 4871, 4871, 5768, 5768, 6709, 8594, 7953, 7953, 9098, 10102, 10648, 11714, 10831, 12358, 12358, 13510
OFFSET
1,2
COMMENTS
Sum of all the parts from all ordered pairs of prime numbers, (p,q), such that p <= n <= q < 2n.
FORMULA
a(n) = A352753(n) + A352754(n).
EXAMPLE
a(5) = 56; there are 6 ordered pairs of prime numbers, (p,q), such that p <= 5 <= q < 10: (2,5), (2,7), (3,5), (3,7), (5,5), and (5,7). The sum of all the parts gives 2+5+2+7+3+5+3+7+5+5+5+7 = 56.
MATHEMATICA
Table[Sum[Sum[k (PrimePi[k] - PrimePi[k - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]), {k, n}], {i, n}] + PrimePi[n] Sum[(2 n - k) (PrimePi[2 n - k] - PrimePi[2 n - k - 1]), {k, n}], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 02 2022
STATUS
approved