login
A352503
Number of ways to write n as w^3 + 2*x^3 + 4*y^3 + 5*z^3 + t^6, where w is a positive integer, and x,y,z,t are nonnegative integers.
1
1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 3, 2, 1, 2, 4, 4, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 5, 3, 2, 1, 2, 2, 2, 3, 2, 2, 1, 2, 3, 4, 4, 1, 4, 5, 3, 6, 4, 5, 4, 5, 5, 3, 5, 3, 5, 1, 1, 1, 3, 6, 2, 3, 2, 4, 4, 3, 3, 2, 4, 2, 2, 3, 1, 3, 4, 5, 2, 5, 4
OFFSET
1,6
COMMENTS
Conjecture: a(n) > 0 for all n > 0.
This has been verified for n = 1..10^6.
It seems that a(n) = 1 only for n = 1..5, 16, 19, 20, 21, 23, 24, 25, 26, 31, 37, 51, 58, 63, 77, 78, 79, 94, 108, 207, 208, 218, 316, 487, 490, 559.
LINKS
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no. 2, 97-120. (See Conjecture 3.4(i).)
EXAMPLE
a(20) = 1 with 20 = 2^3 + 2*1^3 + 4*1^3 + 5*1^3 + 1^6.
a(79) = 1 with 79 = 2^3 + 2*1^3 + 4*0^3 + 5*1^3 + 2^6.
a(316) = 1 with 316 = 1^3 + 2*3^3 + 4*4^3 + 5*1^3 + 0^6.
a(487) = 1 with 487 = 5^3 + 2*!^3 + 4*4^3 + 5*2^3 + 2^6.
a(490) = 1 with 490 = 2^3 + 2*3^3 + 4*3^3 + 5*4^3 + 0^6.
a(559) = 1 with 559 = 8^3 + 2*1^3 + 4*1^3 + 5*2^3 + 1^6.
MATHEMATICA
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
tab={}; Do[r=0; Do[If[CQ[n-t^6-2x^3-4y^3-5z^3], r=r+1], {t, 0, (n-1)^(1/6)}, {x, 0, ((n-1-t^6)/2)^(1/3)}, {y, 0, ((n-1-t^6-2x^3)/4)^(1/3)}, {z, 0, ((n-1-t^6-2x^3-4y^3)/5)^(1/3)}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 28 2022
STATUS
approved