Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 16 2022 04:58:09
%S 1,8,41,856,23147,254512,3309041,29780368,168757087,28857376792,
%T 259716622073,5973480691064,89602217802389,7257779456082784,
%U 210475605899597261,6524743766713282016,19574231315333822573,6524743770186190936,2172739675639135323463,19554657080276529569192
%N Numerators of partial sums of the Madhava series for Pi/(2*sqrt(3)) = A093766.
%C This Madhava series results from the arctan series for tan(Pi/6) = sqrt(3)/3 = A020760.
%D L. B. W. Jolley, Summation of Series, Dover (1961), eq. (273), pp. 16 and 17.
%D Ian Stewart, Grössen der Mathematik, Rowohlt Tachenbuch Verlag, Nr. 63394, 2020, p. 74. [English Original: Significant Figures. Lives and Works of Traiblazing Mathematicians, Profile Books, London, 2017]
%F a(n) = numerator(Sum_{j=0..n} (-1)^j/((2*j+1)*3^j)), for n >= 0.
%e The partial sums begin: 1/1, 8/9, 41/45, 856/945, 23147/25515, 254512/280665, 3309041/3648645, 29780368/32837805, 168757087/186080895, ...
%e For n = 100 the partial sum is 0.9068996821171089252970391288210778661420331240463726... compared to 0.9068996821171089252970391288210778661420331240463702...(the first 53 digits coincide).
%t Numerator @ Accumulate @ Table[(-1)^j/((2*j + 1)*3^j), {j, 0, 20}] (* _Amiram Eldar_, Apr 08 2022 *)
%o (PARI) a(n) = numerator(sum(j=0, n, (-1)^j/((2*j+1)*3^j))); \\ _Michel Marcus_, Apr 08 2022
%Y Cf. A352398 (denominators).
%Y Cf. A020760, A093766.
%K nonn,frac,easy
%O 0,2
%A _Wolfdieter Lang_, Apr 07 2022