login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352397
Numerators of partial sums of the Madhava series for Pi/(2*sqrt(3)) = A093766.
1
1, 8, 41, 856, 23147, 254512, 3309041, 29780368, 168757087, 28857376792, 259716622073, 5973480691064, 89602217802389, 7257779456082784, 210475605899597261, 6524743766713282016, 19574231315333822573, 6524743770186190936, 2172739675639135323463, 19554657080276529569192
OFFSET
0,2
COMMENTS
This Madhava series results from the arctan series for tan(Pi/6) = sqrt(3)/3 = A020760.
REFERENCES
L. B. W. Jolley, Summation of Series, Dover (1961), eq. (273), pp. 16 and 17.
Ian Stewart, Grössen der Mathematik, Rowohlt Tachenbuch Verlag, Nr. 63394, 2020, p. 74. [English Original: Significant Figures. Lives and Works of Traiblazing Mathematicians, Profile Books, London, 2017]
FORMULA
a(n) = numerator(Sum_{j=0..n} (-1)^j/((2*j+1)*3^j)), for n >= 0.
EXAMPLE
The partial sums begin: 1/1, 8/9, 41/45, 856/945, 23147/25515, 254512/280665, 3309041/3648645, 29780368/32837805, 168757087/186080895, ...
For n = 100 the partial sum is 0.9068996821171089252970391288210778661420331240463726... compared to 0.9068996821171089252970391288210778661420331240463702...(the first 53 digits coincide).
MATHEMATICA
Numerator @ Accumulate @ Table[(-1)^j/((2*j + 1)*3^j), {j, 0, 20}] (* Amiram Eldar, Apr 08 2022 *)
PROG
(PARI) a(n) = numerator(sum(j=0, n, (-1)^j/((2*j+1)*3^j))); \\ Michel Marcus, Apr 08 2022
CROSSREFS
Cf. A352398 (denominators).
Sequence in context: A228480 A067301 A295936 * A204572 A374915 A086392
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Apr 07 2022
STATUS
approved