login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least k such that A033273(k) is equal to (A033273(n*k + 1) - 1)/n where A033273(n) is the number of nonprime divisors of n.
0

%I #14 Mar 19 2022 06:32:31

%S 3,13,5,41,11,2479,23,73,103,2249,19,7177,211,691,3089,1289,53263,

%T 726493,41,1597,2243,64406,13129,31351,983,1579,197,43037,1411,

%U 38246575,389,3607,15403,61286,709,1638349,3587,16249,3585641,1017119,1292839,132347,593,32203,51963

%N a(n) is the least k such that A033273(k) is equal to (A033273(n*k + 1) - 1)/n where A033273(n) is the number of nonprime divisors of n.

%e a(2) = 13 because A033273(13) = (A033273(2*13 + 1) - 1)/2 = (A033273(27) - 1)/2 = 1.

%t f[n_] := DivisorSigma[0, n] - PrimeNu[n]; a[n_] := Module[{k = 2}, While[f[k] != (f[n*k + 1] - 1)/n, k++]; k]; Array[a, 29] (* _Amiram Eldar_, Mar 10 2022 *)

%o (PARI) f(n) = numdiv(n) - omega(n); \\ A033273

%o a(n) = my(k=2); while (f(k) != (f(n*k + 1) - 1)/n, k++); k; \\ _Michel Marcus_, Mar 10 2022

%Y Cf. A000005, A001221, A033273, A350516.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Mar 09 2022