OFFSET
1,7
COMMENTS
Also, number of digits in the sexagesimal expansion of terminating unit fractions 1/A051037.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10540 (A051037(10540) = 60^10)
Eric Weisstein's World of Mathematics, Sexagesimal
Wikipedia, Regular number.
FORMULA
a(n) ≍ n^(1/3), with lim sup a(n)/n^(1/3) being (6*log(2)*log(3)*log(5))^(1/3)/log(3) = 1.770... where A051037(n) is a power of 3 and the lim inf being (6*log(2)*log(3)*log(5))^(1/3)/log(60) = 0.4749... where A051037(n) is a power of 60. - Charles R Greathouse IV, Mar 08 2022
EXAMPLE
MATHEMATICA
With[{nn = 1024}, Sort[Flatten[Table[{2^a * 3^b * 5^c, Max[Ceiling[a/2], b, c]}, {a, 0, Log2[nn]}, {b, 0, Log[3, nn/(2^a)]}, {c, 0, Log[5, nn/(2^a*3^b)]}], 2]][[All, -1]] ]
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Michael De Vlieger, Mar 08 2022
STATUS
approved